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The flow of a viscous gas through a shock wave (strong shock) of thickness O (e?), where
g = Bgl‘/’, and R, is the appropriate Reynolds number, has the character of a boundary
layer flow and was investigated in [1]. A two-dimensional problem is discussed in the
present paper, concerning the motion of the gas across a rectilinear acceleration discon-
tinuity in an inviscid problem (a weak shock). It is shown that if the viscosity of the gas
is taken into account in the neighborhood of the line of a weak shock, a ‘boundary layer
of thickness O (g), is formed, in which the gas motion is described by a quasi-linear para-
bolic equation of the second order and unlike the shock wave, is essentially not of one~
dimensional character. Also it is shown that on passing across the line of a weak shock,
the terms O (€) in the gas parameters suffer a discontinuity (just as the tems O (1) in the
case of a shock wave), and formulas are found for these discontinuities.

1. Let us for example consider the problem of a profile BOCDEB (see figure), with a
wedge+like leading edge OBE, sitnated in a
homogeneous, supersonic, viscous flow of a
perfect gas. If the case of an inviscid flow is
considered, then AB is a part of the bow shock
wave the region AOB is the region of homogen-
eous flow, while the region AOC is the region of
a simple wave. At the point O the curvature of
the profile has a discontinuity and the straight
line 04 is a line of a weak shock. Let the
Oy-axis of Cartesian coordinates coincide with
the line OA ; the parameters of the homogeneous
flow in the region OAB will be denoted below by
a subscript O, so that ¥, is the velocity and M,
is the Mach No. in the region O4B; also
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Where 4 and v are the velocity components of the particles of the gas in the direction
of x~ and y-axes respectively. In the neighborhood of 04 in the region of the simple wave

we have
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where y is the ratio of specific heats, and the constant y, is determined by the profile curv-
ature at the point O when x = + 0. If the profile curvature at x = + 0 is zero {continuous),
then @ = 0. In the case of a viscous gas, a boundary layer of thickness O (g}, is formed
near the surface of the profile, where g = RSV’; the Reynolds No. R, is related to the
parameters of the gas in the region OAB, the shock wave AR is changed into a region of
thickness O (e?) , but, near 04, it forms a ‘boundary layer’, as will be shown later, of
thickness O (¢) (region 2 in the figure). The regions adjoining 2 are indicated in the figure
by the numbers I and 3. (We shall assume ! = OB to be a characteristic dimension). If the
linear dimensions are related to !, the velocity components of the gas to V,, the density
p to po, the pressure p to poVy?, the specific enthalpy i to V', the coefficients of viscosity
4 and A to po, then the equations of the laminar flow of a viscous gas (the Navier — Stokes
equation) take the form o (u ou +o _?g_) -

z

— 2 AR R b 2 205

2 8y
_ _op A8 [, 0u B o o . 10w @
——atmlwlt e e et ) rw ME+ H)
a( a (o) _ (1.2)
a‘;u) + azv)"o

du dv \2 du\2 v \2 du oy \2
M — 4 — 2p [ — _— —_— 22
+ (Bx + ay) + ”[(&e) +<6y”+“(6y + ax)}
;=_I_£, = (i), A= A{i), R =V_09££ :::cp“
—ip p=p) () o o ¢ %
where R, is Reynolds number, o is the Prandtl number, ¢, is the specific heat at

constant pressure, k is the coefficient of thermal conductivity for the gas. For the dimension~
less values, the same nomenclature is observed as for the dimensional values.

2. In the regions 1 and 3 (see figure) the gas parameters can be represented in the
form [2]

f="Fo(z,y)+ eFy(z, ) + &F (2, ) + . .. =Ry (2D
where u, v, p, p and { are understood to be represented by f. The terms F, (x, y) define the

inviscid flow, the terms F, (x, y) indicate the influence of the displacement velocity of the
boundary layer.

In the region 2 we will seek a solation to (1.2) in the form
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Rewriting the system of equations (1.2) in terms of the variables £ and y, substitating
(2.2) into it and equating the coefficients of like powers of &, we obtain a system of equa-
tions defining the coefficients of the series of (2.2), which for the first two coefficients can
be written in the form

";*a_, (uy -+ Mopy) = 0, %% =0, i (p1 -+ Mous) =0, _é_ (Mpy — p1) =0 2.3)
a 2 (s + Mops)+ (ps -+ Mour) 22 56— Mo (ha+ 2p0) ‘;g* + VHE—1 ?g; =0 (29
] B » & gy
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where Ao and yio are the values of A and p for i =1/ (y — 1)M2. From (2.3), it
follows that

(2.8)
wy -+ Mopy = @ (¥), v =43 (y), pr-+ Moy = az (), Mopy — 01 = a, (¥)

Onut of the four equations of (2.8), only three are independent. Substituting u, from the
first equation into the third, we obtain M*py — p; = Myay (y) — a5 (y).) Fourth equation
for finding u,, »,, p;, and p, is obtained from the system of equations (2.4) to (2.8).
Adding Equations (2.6) and (2.7), substracting Equation (2.4) from the result and multiply-
ing subsequently by M,, we obtain

24
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Equations (2.8} and (2.9) yield, after some transformations, an equation for u,
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3. Eguation (2.10) together wnh (2.8) describes asymploncally (as & -» 0) the viscous
gas flow near any rectilinear weak shock. We shall now digress from the problem of the
profile and consider the case when the flow incident on the weak shock has the values
iy, ¥1 P1y and py constant, supposing that the flow is one-dimensional. The equation
(2.10) then takes the form

Mg (I._‘)_ES+ Ao - 24t ]d Bty 1) Motur - TMetar — agMo] TUL =
dE? dg
(3.1}
uy—~u;~ =const when {— —oo
Integrating (3.1) with respect to &, we obtain
(3.2)
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Equation (3.2) can be presented in the form:

[(7“1)”°+:&.0 ' 2@‘“‘1 =Ty — ) (i — ) (3.3)
S (42 2
Where u;~ and u,* satisfy the relations
. + = _—.___2_.__ Mo2ay ~— ._—(}_‘_.
w4 Uy G0 {(yMoPay — agMy), uy~uyt TRV (3.4)

Since u, + u,~ when £+ - 0o, and u,” is a real number, therefore 4, is a real number

and u, » u," when £ + oo, and Equation (3.3) describes the gas flow in a weak shock
wave. From (3.4), taking into account (2.8), the following formula is derived

T ] ( - P )
ul +1 1 +T+1 0olP ,rMoz (3-5)

We should note that the value &+ varies with the inclination of the weak shock (i.e.
with M) ; for a direct shock My, = 1, and the formula {3.5) becomes a formula whick can be
obtained from the known results for a direct shock (see, for example, [3]).

4. From section 3 it follows that the flow near a weak shock has a substantially non-
one-dimensional character; it is described by a parabolic quasi-linear equation (2.10). To
find its solution in a concrete example the behavior of 4, when £ + % 0 must be known as
well as the distribution of u, for certain values of y. In the problem with the profile, the
behavior of u, with given y is defined by the solution of system (1 ~ 2) in the neighborhood
of the point 0 (see figure). Let us determine the behavior of u, as € » t oo, In the regions
1 to 3 (see figure) u can be represented by a series of the type (2.1). For the region I

I ML +eUr (z, y) -+ O (e?)

o
while for the region 3 we have according to {1.1),

u=Ut (@ 94 " @)+ 0 ) =

& 24 O(22)+eUr (2, y)+ O (%)
Y Yo

Assuming that U, (2, y), U,* (2, p), . . . are represented asymptocially by a series
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in integral powers of x, we obtain

= .MLH[Ul‘-(o, 9+ 0(2)] + 0 (&)
o (4.1)
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Changing the variable to £ = ze~! and regrouping the terms of (4.1) result in the

formulas
{4.2)

=,.1.. - 2 ._:__L a + O (e*
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The relations (4.2) are true for large £ and small x. From (4.2) and (2:2) it follows
that 7
uy (& = — o0, ) = Uy~ {0, y) + the exponential terms

, a
Uy (B = 4 00, ) == = E+.Us* (0, 4) + the exponential terms

The above relations are the conditions that the expansions (2.2) and (2.1) are not in«
dependent of each’ other.

(4.3)

5. We will now clarify whether Equation {2.10) has solations with asymptotic behavior,
described by the formulas (4.3), and how U, (0, y) and U,* (0, y) are related. From equa~
tion (2.10) it follows that u, » U, wher § — — o0 (zy — Vy~, py = P;"), then

dUu;™} i day i dvy~
L N + = 5.1
dy 2 ( dy ' YMs—1 W ) 0 &1

Substitution of a,, according to (2.8) results, for x =~ 0, in

‘ v~
L ModPi- —0 (5.2)
aUy Mo —1 odPy

If the expansions {2.1) are substitated into the system of equations (1.2}, in order to
obtain a system of equations for the coefficients with the suffix 1, then (5.2) provides a
relationship, which is fnlfilled along the characteristic (x = 0) and will always be satis-
fied, After the integration of (5.1) with respect to y, we obtain, for x =~ 0,

i ar-%—- (a;-}- 7—%%{ + co) (ay == Uy~ + MoPy~, cs=const) (5.3
Investigation of equation (2.10) shows that it has solutions with the following asymptotic
behavior
fe—o0, w=Ur0y+g@e @ 4. .
Where g (y) is an arbitrary function of y
W) =+ —w]?*>0
(with the constant ¢ suitably chosen)

2M .
8= gy [ — oo™ - ho - 2p0]

The decreass of the fanction ¢ (y) with increasing y corresponds to the broadening of
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the region 2 (see the figure) with increasing distance from the profile.
For £+ + oo we shall seek an asymptotic representation, according to (4.3

" E+BW+RE Y (E =+ o0, £ —0) (5.4)
Substitution of (5.4) into (2.10) gives

Uy == y

(5.5)
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Equating the terms of like powers in (5.5) to zero, results in the following equations
for a and 3

| 2 VMo’-—-i
G(G— T+1 -‘—M';"“"‘):O (5.6)

The roots of {5.6) will be
2 VMF—1
AETFTT M
(satisfying exactly (1.1),and (4.3)), and @, = 0. For the case = a, the equation for B
has the form

dﬂ B 'rMoal—aa 1 ii L7
Wt —w T TaE DM v T 2 dy(""*‘_—“vm.—_‘z) (5.7)

For the case o = @, =0 we have

dp 1 d v :
& =T w0 V=) oo

The general solution of (5.7) is given by the formula

B= ; (“‘+ W + c“) + y’i yoS[Y(?rIfiTA;z - % (“‘+ —‘_—-1/1;:*-1 + “)] dy

which, by (2.8) and (5.3) together with the fact that v, = a, (y) = V;~, becomes

= U+ g 3 20+ 1 (i) Jr 69

Where p,™ is the coefficient in the expansion (2.1), taken when x = — 0. Inspection
(5.5) for R shows that it possesses solutions with asymptotic properties, when &+ + o0,
of the form

R=G{pe®uEr+..., O =laly—y—0F—yl2*>0

where G (y) is an arbitrary function of y, and constant ¢, is suitably chosen. From (4.3),
(5.4) and (5.9) it follows, that
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(5,10}
-
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0

where ¢ is a constant, U, is taken at x =+ 0, while the remaining functions at x = ~ 0.
The formula (5.10) shows that the terms O (¢} in the expansion (2.1) undergo a disconti-
nuous change across the line of the weak shock (x=0), and at the same time a basic part of this
discontinuity, which is defined by the integral in (5.10), depends on the dissipative pro-
cesses in the region 2 {see the figure); constant ¢ cannot be determined without consider-
ation of the flow in the neighborhood of the point O. It is quite possible that the value of
constant c is small in comparison with the integral, and it can be neglected, since ¢ de~
termines the influence of parts of the flow in the neighborhood of the point O, while the
value of the integral depends on the acceleration in a simple wave when x =+ 0. For the
case a = 0, = 0 from (5.8) we obtain

= U1+ = Ul.» -+- ¢ (5.11)

Where ¢ is a constant, which can evidently be equal to zero. Thus, in the case where
the profile curvature at the point O is continuous, the terms O (¢) in the transformations
(2.1) are also continuous on the line of the weak shock.

6. Digressing from the problem of the profile, we will consider the case when the flow
upstream of a line of the weak shock has constant terms O (¢) . From (5.10), following
formula for this case

N i o1 .
{/1+=U1 +T+1[ 2Uy~ +TMO(P1 -—‘TM2>]+(T+1)(y yﬂ) y cl.“const
which can be represented in the form

Y—1 Mo p1” ) o
Uyt = =
CEYFL AT (Pl E ) T GEF D= (6.1)

From (6.1) it follows, that if the term containing ¢, is neglected, U,* is also constant,
though different from u,*, given by the formula (3.5) for a weak shock. If it is additionally
assumed that Py~ = p;” = p;” = 0 in the formulas (3.5) and (6.1), then in the formula
(3.3) the presence of u,™ causes the appearance of u,* with the opposite sign, while at the
same time in (6.1), the sign of U," is the same as that of ;™.

7. In conclusion, we note that the character of the behavior of the terms O (g) in
expansions of the type (2.1), established for the case of a rectilinear shock, remains the
same in the case of a curved weak shock (i.e. if the curvature of the surface of a body
possesses a discontinuity at any point, then at the weak shock line originating from it, the
tems O (¢) undergo discontinuities in expansions of the type (2.1); if the curvature is
continuous, then the terms O (€) are continuous).
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